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Abstract .  The structure of the energy spectrum of the exactly soluble Maryland 
model is examined in detail for both incommensurate and commensurate modula- 
tions. The study is motivated by a formal similarity with Harper's equation describ 
ing crystal electrons in a uniform magnetic field. An exact expression is derived 
for the charactaistic polynomial which determines the energy eigenvalues, allowing 
explidt velificstion of the transition from band structure, for commensurate mod- 
ulations, to a point spectrum in the incommensurate Limit. An application is the 
calculation of the total width of the bands. A semiclassical argument is  used to  
assess the relevance of the results to models of physical interest. 

1. In t roduct ion  

Physical systems in which two independent essential length scales are present display 
a number of novel properties (for reviews, see Sokoloff 1985 and Lovesey e t  01 1991). 
A frequently studied case is a tight-binding model of non-interacting electrons in a 
square lattice with an applied magnetic field. Unusual features of this system include 
extreme fragmentation and hierarchical structure of the energy spectrum and infinitely 
sensitive dependence on the magnetic field strength (IIofstadter 1976, Stinchcombe 
and Bell 1987), quantized Hall conductance (Thouless e t  al1982), a transition between 
localized and extended wavefunctions (Aubry and Andre 1980), and scaling behaviour 
of the total width of energy bands (Thouless 1983, 1990, Watson 1991). Analogous 
effects occur in systems such as longitudinally modulated magnets (Lovesey 1988) 
and a model of the lattice dynamics of incommensurate crystals (Currat and Janssen 
1988). 

The systems mentioned possess an eigenvalue equation which is a second-order 
symmetric difference equation with periodically or quasi-periodically modulated coef- 
ficients. For the electron system, the amplitude U, of a tight-binding wavefunction a t  
site n satisfies Harper's equation, 

U,- I + u,+~ + 2a cos(2lrnQ + A)u, = Eu, (1.1) 

where the incommensurability parameter Q is proportional t o  the magnetic field, a 
is unity for an isotropic lattice, and the phase A is the Bloch wavenumber along the 
perpendicular lattice axis. 
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One approach to the theoretical study of this class of eigenvalue problems has been 
the construction of exactly soluble models. Perhaps the most notable is the 'Maryland 
model' of Grempel et al (1982), described by the eigenvalue equation 

u , - ~  + u , + ~  + 2 a  tan(nn4 + A)u, = Eu,. (1.2) 

Although the model was originally introduced in connection with a kicked oscilla- 
tor system, our study is motivated largely by the formal similarity with (1.1). In 
both equations the modulation has period 114. The tangent function, however, is 
unbounded; one consequence is that the small-u case cannot he regarded as a pertur- 
bation from (I = 0, since the modulated term takes on arbitrarily large values if 4 is 
irrational. The formal similarity is more significant for commensurate modulations, 
4 rational, because then the waveform is sampled a t  only a finite number of points, 
avoiding the tangent's singularities. 

In this paper, the energy (E) spectrum of the Maryland model is investigated in 
detail, using analytical techniques applied to an exact solution. New results include 
the Floquet wavenumber, which determines the location of energy band edges {E;} 
and the density of states, calculated in closed form for rational 4. A simple relation- 
ship is derived between commensurate and incommensurate modulations, by labelling 
bands with corresponding incommensurate eigenvalues. The results justify our hy- 
pothesis that a study of low-order periodicity modulations adequately characterizes 
these systems. Another result is the calculation of the total width of the bands in 
the limit of large periodicity. Finally, a semiclassical argument is used to  assess the 
relevance of models with unbounded modulation to  the electron system of physical 
interest. 

2. Exact solution 

The treatment presented here is a more direct version of that given by Grempel et 
al (1982). Multiplying (1.2) through by cos(an4 + A) and defining the generating 
function, 

m .. 

u ( 0 ) = ( E - 2 c o s Q - 2 i a )  eineu, 
n=-m 

yields a first-order difference equation, 

= ei[v(+-lAlu(O - .) (2.2) 

(2.3) 

where 

V(0)  = 2tan-'[a-'(E/2 - COSQ)] 

and T = 2 ~ 4 .  Equation (2.2), together with the periodicity property, u ( 0 )  = v(6'-2~), 
is equivalent to  the eigenvalue equation (1.2). 

The Fourier coefficients of V(6'), defined by 

m 
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are recorded here for future reference: 

V 0 = T - 2 p  

where y > 0 and p E [0, T]  are defined by 

cosh 7 cos p = El2  sinh y sin p = a 

2.1. Incommensurate modulation' 

An irrational value of 4 describes the situation in which the two periods in the problem 
are not commensurate with each other. In that case, iterating (2.2) determines v ( B )  at 
a dense set in 0 E [-T, T I .  Under conditions discussed below, v(0) may be expanded 
as 

I ._ .. I 
L ,.=-w 

where U is an integer. The coefficients f, are determined by substituting into (2.2), 
from which 

f n -  - (1 - e-inr)-lVn n # o (2.8) 

and 

Thus 

sin[n(B + T+)] 

sin("$ 

m 

e'"@f, = ZV, 
n=-m "=I  

(2.10) 

determines the eigenfunction, while (2.9) is an implicit equation for the energy eigen- 
values. The n = 0 term is absent from (2.  lo), since it contributes only an overall phase 
factor to U(@). Combining (2.9) and (2 .5)  and eliminating y from (2 .6) ,  we obtain 

E, = ztan(nv4 + A ) J ~  + C O S ~ ( W ~  + A).  (2.11) 

The eigenvalues, labelled by the integer U, form a countable set dense in the real line, 
in other words a pure point spectrum. 

The solution presented here is valid only when d is 'sufficiently irrational', For 
special values of 4, the Liouville numbers, the series (2.10) fails to converge due to the 
presence of small denominators sin(an4). In  this case, analysed in detail by Prange 
et a /  (1983, 1984) and Simon (1985), the energy spectrum is singular continuous (not 
a countable union of points or line segments). This topic is not pursued here. 
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2.2. Commensurate modulation 
When 4 is a rational number, M / N  (with M and N co-prime integem), general con- 
siderations applicable to periodic eigenvalue equations (Lovesey et a1 1991) apply. The 
spectrum consists of N bands, in which the eigenvalue equation (1.2) admits solutions 
satisfying Floquet’s theorem, 

% t N =  e iNk  (2.12) 

with reai 1. in the gaps separating stabie bands, the Fioquet wavenumber k IS imag- 
inary. The band edges are known to be the roots of 

ON(E) 2cos(Nk) = lt2 (2.13) 
which is a polynomial equation of degree N in E .  The characteristic polynomial 8, 
is readily generated for particular values of N ;  for instance, 

8, = E - 2 a t a n A  

0, = E Z + 4 a E c o t 2 A - 2 ( 1 + 2 a Z )  (2.14) 
and 

8, = E3-6crEZtan3A-3(1+40Z)E+2a(3+4aZ)tan3A 

A general solution is onEe again generated by iterating (2.2), beginning at  0 = k. 
After m iterations, 

where the angular variables are taken modulo 2a. Since N r  = 0 (mod Zr), ~ ( 0 )  is 
determined at only N points in [-a, a]. Setting m = N ,  consistency requires 

N 

- 2 N A  + c V ( j r  + k) = 2rMA 
j=1 

(2.16) 

for some integer A. The resulting equation, 
m 

& + 2 ~ ~ N c o s ( ~ N k ) = 2 ( ~ A q 3 + A )  (2.17) 

is the quantization condition, analogous to (2.9), for the commensurate case. I t  is 
an implicit equation for the energy eigenvalues as a function of the labels X and k. 
The integer A = O , l , . .  . , N  - 1 labels the N bands while k E [-a/N,?r/N] labels 
independent states within a band. Evaluating the sum in (2.17) explicitly we find 

8,/2 = cos(Nk) = cosh(Ny) cos(Np) + sinh(Ny) sin(Np) cot(N(A + 7r/Z)] (2.18) 

from which the location of band edges may be calculated; the results (2.14) can be ob- 
tained from (2.18). The closed form expression (2.18) for the characteristic polynomial 
is a new result, whose consequences are developed in subsequent sections. 

The analytic solution (2.18) is also convenient for numerical calculations of the 
spectrum. The results of such a calculation are plotted in figure 1, for selected values 
of the amplitude and phase parameters. The energy bands are shown as horizontal 
lines at each rational value of 4, ranging from 0 to 1 along the vertical axis. The figure 
corresponds to the well-known ‘butterfly diagram’ (Rofstadter 1976) for the electron 
system. Energy bands lying outside the range -10 5 E 5 10 are not shown. 

(_= 1 
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Figure 1. The energy spectrum for a = 1.1 and A = 0.5 is platted horivlntally 
as a function of the incommensurability parameter, t d n g  rational valuer 4 = M / N  
along the vertical axis with N = 2,3, , , . , 50 .  The horizontal energy scale ranges from 
-10 to 10. 

3. Labelling theorem 

We now investigate the relationship between the point spectrum and the band spec- 
U ulu ucc:urrillg ;U lrur genrnc inaiionai and raiionai cases, respeciiveiy. First, note 
that when 4 is rational, the incommensurate energy formula (2.11) generates only 
N distinct eigenvalues rather than a countable dense set. That these correspond to 
the N bands in the commensurate problem may be verified as follows: when (2.9) is 
satisfied, we have 

1 _ _  .- LL. _._.. :-  . 

and hence 

lO,(E,)/Zl = e-”Icos(Np)I 5 1 (3.2) 

implying that E, lies within a stable band. I t  can be shown that exactly one E, lies 
iii each band. Thus each of the iJ vaiues of E, marks the approximate positions of a 
band, and the index U labels the bands for commensurate modulations. 

I t  will be shown in the next section that  the width of a single band decreases 
extremely rapidly with increasing N, namely as N-’e-N7. Hence for large N the 
bands are very closely concentrated about the labelling points E,. In fact, a plot of 
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the points E, against rational values of 4 is indistinguishable from figure 1, on the 
scale used, for all but the smallest values of N. 

The labelling of bands in the periodic problem via the corresponding incommensu- 
rate eigenvalues (2.11) thus provides a valuable picture of the correspondence between 
the two extreme cases. A rational value of 4 may be approached by a sequence of 
rationals with increasing denominators. As the denominator increases, the bands be- 
come narrower and increase in number. In the (generic) incommensurate limit, the 
number of bands becomes infinite, each of them reducing to a single point. 

It has been suggested by Lovesey (1989) that, from an experimentalstandpoint, ex- 
amination of small-N cases is sufficient to characterize the behaviour of these systems. 
The band labelling result proved here justifies this belief that the essential physics is 
contained in low-periodicity cases, for this particular model. Similar considerations are 
likely to  apply to the electron model, and other systems of physical interest, although 
the details may be complicated by the possibility of a singular continuous spectrum 
in the generic incommensurate case. 

4. Total bandwidth  

As an application of the band labelling result, we calculate the total width W of the 
energy spectrum for the Maryland model. Of interest in itself as a characterization 
of the spectrum for large periodicity, the bandwidth may also be compared with the 
corresponding quantity for the Harper model (1.1). This has an interesting scaling 
behaviour near its self-dual point oi = 1, and the product NW appears to approach a 
universal large-N limit independent of M (Thouless 1983, 1990, Watson 1991). 

The bandwidth here is different from that normally calculated for Harper's equa- 
tion: we define W as the total width for a fixed value of the phase A, rather than the 
union over all A.  This is an essential step, since the union of eigenvalues for all A is 
the entire real line. The exact solutions (2.11) and (2.18) do not depend on M ,  so we 
may set M = 1 for convenience. 

It has been shown that a single band, for $ rational, is an interval of the energy 
axis over which the characteristic polynomial, given by (2.18), varies from -2 to 2. 
Hence the width of the band is given, to first order, by 

(4.1) 

where the derivative is evaluated at E = E, i n  accordance with the labelling theorem 
of thegrevious section. The terms neelected vanish in the large-A' limit, so this a,," Il t ' lLC 

im"y"g E, !iea within B stab!e hand. !t CBE be s h o w  ?hzt exacily One E, lies 
in each band. Thus each of the N values of E, marks the approximate positions of a 
band, and the index U labels the hands for commensurate modulations. 

I t  will be shown in  the next section that the width of a single band decreases 
extremely rapidly with increasing N ,  namely as N-'e-,V. Hence for large N the 
bands are very closely concentrated about the labelling points E,. In fact, a plot of 
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Evaluating the derivative using (2.6) and summing contributions from individual 
bands, the total width of the energy spectrum for large N is given by 

sinh’ 7 + sinz# N-1 
W = EN-’) sin[N(A + n/2)]1 e-Ny ( 

Y= 0 

The sum in this expression may be evaluated asymptotically using a standard tech- 
nique analogous t o  Laplace’s method for integrals (Bender and Orszag 1978). The 
only appreciable contribution to the sum is concentrated in a small region near the 
point 

(4.5) 
1 

Po = TI2 yo = sinh- (I 

at  which ecN7 attains an extremely sharp maximum. Expanding the exponent in a 
power series yields 

W = EN-’Isin[N(A+ n/2)]1coshyo e-N7o ~ e ~ p ( - a n v ’ ~ / 2 c o s h y ~ )  (4.6) 
Y ’  

where the sum is over all integers U’. The remaining sum is readily approximated by 
its corresponding Riemann integral, and we obtain the result 

W = 161sin[N(A+ ~/2) ]1  (2nNtanhyo)-”2 coshy, e-N7o (4.7) 

giving the total width of the energy spectrum, for a particular phase A, in the large-N 
limit. 

The Maryland model does not have a self-dual point, and the behaviour of W is 
clearly dominated by the singularity a t  (I = 0, arising from the property, mentioned 
earlier, that  (I z 0 does not correspond t o  a small modulation. An interesting feature 
of (4.7) is that  if (I decreases so that N a  remains constant, W tends, apart from the 
A-dependent prefactor, t o  a finite limit. 

5 .  WKB picture 

Some properties of the Maryland model differ considerably from those of Harper’s 
equation: the generic incommensurate spectrum is a countable set of points with no 
hierarchical clustering, all the states are localized in the lattice, and the bandwidth 
diverges for 01 = 0 and is exponentially small for 01 > 0. The differences are readily 
understood in terms of a WKB analysis applicable to discrete eigenvalue equations 
(Watson 1991, and references therein). The essential feature is the unbounded nature 
of the tangent modulation. 

The qualitative picture is as follows. For large N we imagine a quantum particle 
moving in an series of one-dimensional potential wells, with classical momentum 

p ( z )  = cos-’[E/2 - atan(xz)] .  (5.1) 

To a leading approximation, the eigenfunctions will be bound states, localized in a 
particular well. The eigenvalues, determined by a Bohr-Sommerfeld quantization 
condition of the type 

N p(z)dz = 2n(n + r) ( 5 . 2 )  f 
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where the integral is around a closed classical orbit and r depends on the phase A, 
form a set of N discrete points. In the N - 00 limit these yield the countable 
spectrum of the generic incommensurate. There are no other possibilities since the 
classical trajectories are closed for any energy. Broadening of the bands for finite 
N ,  arising as a higher order effect of tunnelling between adjacent potential wells, is 
exponentially small. These features are to be expected for any modulated system in 
which the diagonal coefficient is unbounded. 

For Harper's equation, by contrast, the potential wells are of finite depth and 
there are some regions, near the classical.separatrix, in which the effect of tunnelling 
remains appreciable for large N. Roughly speaking, these bands are broad enough 
for the spectrum to remain uncountable even as N - CO, resulting in a Cantor set 
structure. Clearly both localized and extended states are possible, depending on U. 

6. Conclusions 

Our study of the Maryland model has been motivated by the formal similarity of 
its eigenvalue equation with the Harper equation describing 'an electron in a lattice 
subject to a uniform magnetic field. The characteristic polynomial, which generates 
the hand edges, for the latter model can he determined exactly only in the asymp- 
totic limit of large periodicity (Watson 1991). Subtle features of the spectrum, such 
as hierarchical structure, are not resolved at  the level of approximation used. The 
Maryland model, however, is exactly soluble for any periodicity. We have derived 
an exact expression for the characteristic polynomial, equation (2.18), which displays 
explicitly the transition from band structure to point spectrum as incommensurability 
i s  approached. A similar transition is imagined to occur for the Harper model, hut has 
not been directly confirmed. It implies that studies of low-order periodicity cases are 
adequate for comparison with experiment, in which the resolution of spectral structure 
is necessarily limited. 

Significant differences between the two models, such as the behaviour of the total 
bandwidth calculated in section 4,  and the absence of a transition from localized 
to extended wavefunctions in the Maryland model, have been explained by a WKB 
argument, sketched in section 5. An alternative explanation of the dominance of 
localization in the Maryland model is the presence of inherently long-range interactions 
in its dual problem (Stephen and Akkermans 1986). 
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